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Abstract

In this study, the Adomian decomposition method is used to analyze the thermal characteristics of a straight rect-

angular fin for all possible types of heat transfer. The local heat transfer coefficient is assumed to vary with a power-law

function of temperature. Instead of a traditionally implicit form of solution, the decomposition solution gives an expli-

cit expression of temperature distribution as a function of position along the fin. The obtained decomposed analytic

solution is in the form of an infinite power series and the series can be truncated in a practical way to obtain numerical

results. Thus, the fin tip temperature, fin base heat transfer rate, and fin efficiency can be calculated directly without the

need of iteration. Results indicate that the series converges rapidly with high accuracy and seems to be convenient for

the engineering application.

� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Fins are frequently used in engineering to enhance

the rate of heat transfer on a solid surface. For the cases

of constant heat transfer coefficient, the analytical solu-

tions of temperature distribution as well as heat transfer

rate can be easily obtained [1]. However, in some situa-

tions such as fins in boiling liquids, the heat transfer

coefficient is no longer uniform and varies with the tem-

perature difference between the surface and the adjacent

fluid in a nonlinear manner. The dependence of the heat

transfer coefficient on the local temperature difference can

be governed by a power-law-type form. Consequently,

the equation for temperature becomes highly nonlinear

and is difficult to obtain an analytical solution.
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Numerous studies have devoted to the analysis of fin

performance of this type of problems due to its impor-

tant application in engineering. Lai and Hsu [2] assumed

a simple model to calculate the base heat flux and the

length of the nucleate boiling section. Their results were

compared consistently with those of Haley and West-

water [3]. Mehta and Aris [4,5] considered the same

equation related to the problem of diffusion and reaction

in a porous slab. They gave the solutions for all orders

of reaction in terms of the hyper-geometric function.

Later Ünal [6–9] made a series studies on an extended

surface with nonuniform heat transfer coefficient and

showed that the equation can be integrated analytically

in a closed form for a limited number of cases. Sen and

Trinh [10] used the model of Mehta and Aris to compare

the heat transfer rate of a single fin cooled by natural

convection, nucleate boiling, and radiation. Liaw and

Yeh [11] used the same model and further studied all

possible types of heat transfer including the cases of film
ed.
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Nomenclature

A cross-section area of the fin

An Adomian�s polynomial
a dimensional constant in Eq. (1)

C integral constant

h local heat transfer coefficient

k thermal conductivity of the fin

L the length of the fin

LX operator of the highest order of derivative

L�1X inverse operator of LX
N dimensionless fin parameter defined in Eq.

(3)

n exponent in Eq. (1)

P periphery of the fin cross-section area

Qb dimensionless temperature gradient at fin

base

T temperature

X nondimensional space coordinate

x dimensional space coordinate

Greek symbols

h dimensionless temperature of the fin

um m-terms summation of Adomian�s polyno-

mial

g fin efficiency

Subscripts

a refer to the ambient property

b refer to the fin base

e refer to the fin tip

m number of terms in the series
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and transition boiling with and without heat transfer at

fin tip. They also conducted an analytical and experi-

mental study for a fin with various types of boiling

occurring simultaneously at adjacent locations on its

surface [12]. However, the hyper-geometric function

and Dawson�s integral [11] are implicit expressions and
can be solved only by iterations to find the fin tip tem-

perature as well as the temperature distribution along

the fin. Dul�kin and Garas�ko [13,14] pointed out that

such calculations are acceptable in scientific investiga-

tion but are inconvenient for engineering application.

Thus, they derived a closed form solution for this prob-

lem by uses of the quotient and fitting procedure for the

exact hyper-geometric and well-known hyperbolic solu-

tions. The obtained formula in terms of ordinary func-

tions gives an expression for direct evaluation of fin tip

temperature in a wide range of assigned values of expo-

nent of the power-law function and fin parameter. The

heat transfer rate at fin base and fin effectiveness

can also be determined [14]. Their results were com-

pared consistently with those obtained by numerical

integration.

Recently, the Adomian decomposition method has

been used to solve a wide range of physical problems

[15–21]. This method provides a direct scheme for solv-

ing linear and nonlinear deterministic and stochastic

equations without the need for linearization and yields

rapidly convergent series solutions. Chiu and Chen [22]

have applied this method to analyze the performance

of longitudinal fin with constant heat transfer coefficient

and variable thermal conductivity. Their results showed

that the decomposition solution has many merits includ-

ing fast convergence and high accuracy. The objective

of this study is to apply the Adomian decomposition
method to investigate a straight fin governed by a

power-law-type temperature dependent heat transfer

coefficient. Based on the decomposed analytical solu-

tion, the temperature on the fin surface can be expressed

explicitly as a function of position along the fin. The ef-

fects of exponent value and fin parameter on the temper-

ature distribution as well as the fin tip temperature can

also be obtained quickly. In addition, the heat transfer

rate at fin base and fin efficiency are presented in detail.

Results are compared with those of [13,14].
2. Problem formulation and decomposition method

Consider a straight fin of length L with a uniform

cross-section area A. The fin surface is exposed to a con-

vective environment at temperature Ta and the local

heat transfer coefficient h along the fin surface is as-

sumed to exhibit a power-law-type dependence on the

local temperature difference between the fin and the

ambient fluid as

h ¼ aðT � T aÞn; ð1Þ

where a is a dimensional constant defined by physical

properties of the surrounding medium, T is the local

temperature on the fin surface, and the exponent n de-

pends on the heat transfer mode. The value of n can vary

in a wide range between �4 and 5 [11,12]. For example,

the exponent n may take the values �4, �0.25, 0, 2, and
3, indicating the fin subject to transition boiling, laminar

film boiling or condensation, convection, nucleate boil-

ing, and radiation into free space at zero absolute tem-

perature, respectively. For one-dimensional steady

state heat conduction, the equation in terms of dimen-
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sionless variables X = x/L and h = (T � Ta)/(Tb � Ta)
can be written as

d2h

dX 2
� N 2hnþ1 ¼ 0; ð2Þ

where the axial distance X is measured from the fin tip,

Tb is the fin base temperature, and N is the convective–

conductive parameter of the fin defined as

N ¼ hbPL2

kA

� �1
2

¼ aPL2

kA
ðT b � T aÞn

� �1
2

: ð3Þ

In the above equation hb, P, and k represent the heat

transfer coefficient at fin base, the periphery of fin

cross-section, and the conductivity of the fin, respec-

tively. For simplicity, assume the fin tip is insulated

and the boundary conditions to Eq. (2) can be expressed

as

X ¼ 0;
dh
dX

¼ 0; ð4Þ

X ¼ 1; h ¼ 1: ð5Þ

According to the Adomian decomposition method [21],

we can define the linear operator LX = d2/dX2. Conse-

quently, Eq. (2) becomes

LXh ¼ N 2hnþ1 ¼ N 2ðNAÞ; ð6Þ

where NA = hn+1 represents the nonlinear term. The

decomposition technique expands the solution of h in

a series form

h ¼
X1
i¼0

hi ð7Þ

and the nonlinear term can be decomposed by Ado-

mian�s polynomials [21] in the following form

NA ¼
X1
i¼0

Ai; ð8Þ

where Ai can be obtained by the formula

A0 ¼ f ðh0Þ and Ai ¼
Xi

m¼1
cðm; iÞf ðmÞðh0Þ; i P 1: ð9Þ

In the above equation, c(m, i) are products of the m com-
ponents of h whose subscripts sum to i, divided by the

factorial of the number of repeated subscripts. Accord-

ingly, the Ai�s are expressed as

A0 ¼ f ðh0Þ ¼ hnþ1
0 ;

A1 ¼ cð1; 1Þf ð1Þðh0Þ ¼ h1
df ðh0Þ
dh0

¼ ðnþ 1Þh1hn
0;

A2 ¼ cð1; 2Þf ð1Þðh0Þ þ cð2; 2Þf ð2Þðh0Þ

¼ h2
df ðh0Þ
dh0

þ h21
2!

d2f ðh0Þ
dh20

¼ ðnþ 1Þh2hn
0 þ

1
nðnþ 1Þh21h

n�1
0 ;
2

A3 ¼ cð1; 3Þf ð1Þðh0Þ þ cð2; 3Þf ð2Þðh0Þ
þ cð3; 3Þf ð3Þðh0Þ

¼ h3
df ðh0Þ
dh0

þ h1h2
d2f ðh0Þ
dh20

þ h31
3!

d3f ðh0Þ
dh30

¼ ðnþ 1Þh3hn
0 þ nðnþ 1Þh1h2hn�1

0

þ 1

6
nðnþ 1Þðn� 1Þh31h

n�2
0 ; � � � ð10Þ

So far, hi�s can be assigned arbitrarily. However, they are
taken in the following way for optimal convergence. We

impose the inverse operator L�1
X on both sides of Eq. (6)

yields

X1
i¼0

hi ¼ h0 þ N 2L�1
X

X1
i¼0

Ai; ð11Þ

where h0 is the one term approximation of h and can be

assigned as

h0 ¼ hð0Þ þ X
dhð0Þ
dX

: ð12Þ

From the boundary condition (4) and taking h(0) be an
arbitrary constant C, the decomposition solution can be

obtained by the recursive relationship derived from

Eq. (11)

hiþ1 ¼ N 2L�1
X Ai; i P 0: ð13Þ

Thus, all components of h are determinable since A0

depends only on h0, and then A1 depends on h0 and

h1, etc. The first four iterates are expressed as the

following:

h0 ¼ C;

h1 ¼
1

2
C1þnN 2X 2;

h2 ¼
1

24
ð1þ nÞC1þ2nN 4X 4;

h3 ¼
1

720
ð1þ 5nþ 4n2ÞC1þ3nN 6X 6;

� � �

ð14Þ

The practical solution will be the m-terms approxima-

tion um to h, which is usually written as

um ¼
Xm�1
i¼0

hi ¼ h0 þ h1 þ h2 þ � � � þ hm�1; m P 1; ð15Þ

so that um approaches h as m!1. The other bound-

ary condition given by Eq. (5) is used to evaluate the

constant C. Note that the value of C must lie in the

interval (0,1) to represent the temperature at the fin

tip. Once the value of C is determined, Eq. (15) gives

an approximation analytical solution of h for assigned

values of parameters N and n, and the temperature dis-

tribution along the fin is expressed explicitly as a func-

tion of position X. Moreover, the analysis of fin

performance can be easily performed by the use of this

equation.
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Fig. 2. The variational relationships of N and he for several
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3. Results and discussion

First we examine the convergence of the present

method by defining Du = um+1(0) � um(0) which ex-

pressed the derivation as one term is added to the solu-

tion at X = 0. Fig. 1 shows the variations of Du with the

number of components m for the case N = 1 with several

assigned values of n. Note that there is no solution for

integer values of n less than �1 at N = 1. It is found that

the deviation Du reduces rapidly with m and is less than

the order of magnitude 10�4 as m > 5 for all the cases

considered, which indicates the convergence of the series

is quite excellent. Several cases with variations of param-

eters N and n are also tested and it can be calculated that

the use of 13 terms in Eq. (15) is sufficient to yield accu-

rate results.

The relationship between N and he for �4 6 n 6 5 in

the usually used range 0 < N 6 5 is determined in Fig. 2,

where he = h(0) represents the fin tip temperature. It is

found that the present results are in excellent agreement

with those obtained by [13] with numerically integration

method. The dashed curves corresponding to each value

of n are the results of [13] from the derived close-form

relationship for the approximately dependence of the

fin parameter N on he and n. Obviously, the present

method gives fast and accurate results instead of compli-

cated numerical integration and iteration procedure. It is

noted that each curve for n < �1 has a peak value. Sen

and Trinh [10] have proved that only the branch on

the right-hand side of the peak corresponds to the phys-

ically stable and realizable states by means of the linear

stability analysis.

The temperature profiles for several assigned values

of n at N = 1 are displayed in Fig. 3. As indicated in

Eq. (15), the temperature along the fin is expressed in

an explicit function of position X. Thus, the temperature
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Fig. 1. The variations of Du with m for several assigned values

of n with N = 1.
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Fig. 3. The temperature profiles for several assigned values of n

at N = 1.
profile can be easily obtained for any exponent value n.

The characteristics of temperature profiles have been

discussed by Liaw and Yeh [11] and Dul�kin and

Garas�ko [14]. The former used the hyper-geometric

formulas to determine the profiles and the latter derived

an inversed form for the temperature distribution along
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the fin, and then evaluated the profile via an iterative

procedure. The present results are consistent with both

of them while with more straightforward process.

The amount of the energy transferred from the fin

base is of great interest in engineering and can be indi-

cated by the dimensionless temperature gradient Qb with

the definition Qb = dh(1)/dX. Fig. 4 illustrates the depen-
dence of Qb and N for some typical values of n. The re-

sults can be simply obtained via the direct differentiation

of Eq. (15). It is found that the parameter Qb increases

with N for all the values n considered. Note that only

the physically stable states of the curve are shown for

the cases n = �2, �3 and �4 in this figure.

The other properties such as the fin efficiency as well

as the fin effectiveness also can be easily determined. For

instance, if we define the fin efficiency g in the usual way

as the ratio of total heat transfer rate to that of fin at

base temperature, we get

g ¼
R L
0
PhðT � T aÞdx

PLhbðT b � T aÞ
¼

Z 1

0

hnþ1 dX : ð16Þ

The results are demonstrated in Fig. 5 for several values

of n. Note that the case n = �1 indicates an uniform lo-

cal heat flux over the whole fin surface and induces the

result of g = 1. So the Eq. (16) is valid only for the cases

nP �1 as shown in Fig. 5. It is found that the value of g
decreases with N as n > �1, and the decreasing rate in-

creases with the exponent value of n.
4. Conclusions

The Adomian decomposition method has been used

to analyze the heat conduction problem for a fin with
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Fig. 4. The variations of Qb with N for several assigned values

of n.
heat transfer coefficient varying as a power-law function

of temperature. This method provides a simply approx-

imate exact solution without any assumption of lineari-

zation. This character is very important for systems with

strong nonlinearities which could be extremely sensitive

to small changes in parameters. The obtained solution

for temperature distribution offers many advantages

over the other methods including fast convergence and

high accuracy, and especially gives an explicit form of

solution. Thus, the other important properties of fin

such as the fin base thermal conductance and fin effi-

ciency can be quickly evaluated from the explicit solu-

tion. It would be useful to apply this method to a

variety of nonlinear heat conduction problems, and

helpful for engineer to analyze highly nonlinear system.
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[6] H.C. Ünal, Determination of the temperature distribution

in an extended surface with a non-uniform heat transfer

coefficient, Int. J. Heat Mass Transfer 28 (1986) 2279–2284.



1824 M.-H. Chang / International Journal of Heat and Mass Transfer 48 (2005) 1819–1824
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